
Online Algorithms for Maximizing Weighted
Throughput of Unit Jobs with Temperature

Constraints

Martin Birks1, Daniel Cole2, Stanley P. Y. Fung1, and Huichao Xue2

1 Department of Computer Science, University of Leicester, Leicester LE1 7RH,
United Kingdom. {mb259,pyfung}@mcs.le.ac.uk

2 Department of Computer Science, University of Pittsburgh, Pittsburgh, USA.
{dcc20,hux10}@cs.pitt.edu

Abstract. We consider a temperature-aware online deadline schedul-
ing model. The objective is to schedule a number of unit jobs, with re-
lease dates, deadlines, weights and heat contributions, to maximize the
weighted throughput subject to a temperature threshold. We give an op-
timal randomized algorithm and another resource-augmented constant-
competitive randomized algorithm for the problem. We also give almost
tight upper and lower bounds for the multiple processor case.

Keywords: Online algorithms, scheduling, competitive analysis, tempera-
ture, resource augmentation.

1 Introduction

Background on Temperature. There has been a tremendous increase in pro-
cessing power and packing density in microprocessors in recent years; thermal
management in processors has therefore become an important issue in microar-
chitecture. High temperature affects reliability, incurs higher cooling costs, ac-
celerates failure mechanisms such as electromigration and dielectric breakdown
which can lead to permanent device failures, and worsens leakage which leads
to increased power consumption [9]. Commonly, there is a critical temperature
threshold that cannot be exceeded. Modern processors are usually ‘multicore’
where multiple processing units are put together on a single chip. One of the
reasons for this architecture is that it allows a lower operating frequency (and
hence temperature) when delivering the same computational power.

There has been quite a lot of recent work on a related problem of minimizing
energy consumption in an online scheduling context (see e.g. [13, 3] among many
others). However, optimizing for energy/power and for temperature require dif-
ferent techniques [3]. Arguably, thermal management is even more important
than energy management in at least the following sense: as Bansal et al. [3] put
it, “if the processor in a mobile device exceeds its energy bound, then the bat-
tery is exhausted. If a processor exceeds its thermal threshold, it is destroyed.”

However, algorithmic work on temperature issues is comparatively limited so
far.

The temperature of a processor is related to its power usage and the cooling
mechanism. Since the power usage is a convex function of processor speed [3],
one possible way of managing temperature is to slow down the processor when
the temperature is too high. This can be supported in the hardware level by dy-
namic voltage scaling (DVS). Online and offline thermal management algorithms
using DVS have been designed and analysed in [3]. However, these algorithms
are concerned with minimizing the maximum temperature, i.e., the peak tem-
perature of the online algorithm is at most a constant factor higher than that of
the offline optimal algorithm. Arguably, it is more useful to impose a fixed tem-
perature threshold, and subject to this threshold, maximize some measure such
as throughput; after all, the processor may die even if the threshold is exceeded
by just a little. We consider a different model, described below.

Our model. Instead of slowing down the processor, we allow the algorithms to use
heat characteristics information of the jobs to make scheduling decisions. This
can be done at the operating systems level. Different types of jobs tend to have
different patterns of heat contributions (e.g. a CPU-intensive job vs. a memory-
intensive one). Recent empirical work [11] suggests that using this information
can help produce better schedules with minimal performance degradation while
maintaining a good thermal profile.

As a simplified scenario, we consider a set of unit-length jobs, where each job
j has a release time r(j), a deadline d(j), a weight w(j) and a heat contribution
h(j). All release times and deadlines are integers. At each integral time step,
some jobs arrive, and the algorithm selects (at most) one job to schedule. The
temperature of the processor will be increased due to the job execution, but
there is also a cooling factor R > 1, so that the temperature is reduced by a
factor of R after every time step. Thus, if the temperature at time t is τ , and the
job scheduled at time [t, t+ 1) has heat contribution h, then the temperature at
time t + 1 is (τ + h)/R. We assume, without loss of generality, that the initial
temperature is 0, and the temperature threshold of the processor is 1.

The algorithm is online meaning that it makes decisions without knowledge
of future job arrivals. The objective is to maximize the weighted throughput, i.e.
total weight of jobs completed before their deadlines, while not exceeding the
temperature threshold. In a single processor environment, this can be denoted,
using standard notation, by 1|online-ri, hi, pi = 1|

∑
wiUi. Such a model was

first studied in [8] where the unit jobs represent unit slices in an OS scheduler.
In the multiple processor case, m denotes the number of processors. All pro-

cessors have the same temperature threshold of 1 and the same cooling factor.
The temperature of each processor is updated independently, i.e., the tempera-
ture of a processor at time t + 1 is calculated based on the its temperature at
time t, the heat contribution of the job it schedules at t and the cooling factor,
in the same way as in the single processor case.

The performance of online algorithms is analysed using competitive analysis.
An online algorithmA is c-competitive, if the value obtained byA on any instance

is at least 1/c that of the offline optimal algorithm. For randomized algorithms,
we consider the expected value of A, against an oblivious adversary who has to
specify the input sequence without knowing the outcome of the random choices
made byA. See e.g. [5] for further details on competitive analysis and adversaries.

A job j with h(j) > R can never be scheduled by any algorithm, because
the temperature threshold will be immediately exceeded; hence we can assume
that all jobs have h(j) ≤ R. A job j with h(j) = R is said to have the maximum
permissible heat, or simply full heat. We will see that if the heat contribution
is bounded away from full heat, more interesting and more useful results can
be obtained. Moreover, full heat is not reasonable because it effectively means
that once any job (of any positive heat contribution) has been scheduled, then
no full heat job can be scheduled, no matter how long afterwards. In practice,
after some finite amount of idle time, the processor is effectively at the ambient
temperature and can run other jobs. Also, a full heat job will almost ‘burn’ the
processor (starting from the ambient temperature) in just one ‘quantum’ of time,
which is perhaps not really that reasonable.

Previous results. Without temperature constraints, the problem is known as unit
job scheduling in the literature and received a lot of attention in recent years.
Currently, the best deterministic upper and lower bounds on the competitive
ratio are 1.828 [10] and 1.618 [7, 1], and the best randomized upper and lower
bounds are 1.582 [6] and 1.25 [7].

The paper [8] introduced temperature issues into such a model. They consid-
ered the unweighted case, i.e., all jobs have the same weight so that the objective
becomes maximizing the number of completed jobs, and that the cooling factor
R = 2. They showed that computing the offline optimal schedule is NP-hard,
and that all ‘reasonable’ algorithms are 2-competitive and this ratio is the best
possible for deterministic algorithms. In [4] this result is extended to all values
of R, giving an optimal competitive ratio that increases as R decreases (but is
a constant for any fixed R).

Our results. In this paper we consider the case where jobs have different weights,
to represent their different importance. We show that this weighted version does
not admit constant competitive algorithms for the deteministic case. Then we
consider two ways of improving the competitiveness: using randomization and
using multiple processors. All of our results work for any R > 1.

For the randomized case, we give optimal Θ(logW) bounds on the competi-
tive ratio where W is the ratio of maximum to minimum job weights. Further-
more we give a constant competitive randomized algorithm when the heat contri-
bution of all jobs are a constant factor 1−ε away from the maximum permissible
heat contribution. For any ε > 0, the algorithm is O(log 1/ε)-competitive, and
this competitive ratio is optimal up to a constant factor. This allows a tradeoff
between the maximum permissible heat and the competitive ratio. The result
can be interpreted in a resource augmentation setting where the online algorithm
has a slightly higher temperature threshold than the offline optimal algorithm.

For the multiple processor case, we give an upper bound of O(mW 1/m) and
a lower bound of Ω((mW)1/m) on the competitive ratio of deterministic algo-
rithms. Thus for constant m this gives a tight bound of Θ(W 1/m).

In the following, OPT denotes the optimal offline algorithm, A denotes an
online algorithm and |A| denotes the value (weighted throughput) of the schedule
produced by algorithm A.

2 Deterministic case

We first make the simple observation that deterministic algorithms give poor
results on a single processor. It is easy to see that no deterministic algorithms
can have competitive ratio better than W , if jobs can have full heat. Consider
two jobs J1 and J2, with r(J1) = 0, d(J1) = 1, w(J1) = 1, h(J1) = R, and
r(J2) = 1, d(J2) = 2, w(J2) = W,h(J2) = R. When J1 arrives, A must schedule
it or else J2 will not arrive and it will have an infinite competitive ratio. Once J1
is started, A cannot schedule J2. OPT schedules only J2. Thus the competitive
ratio is W .

It is also easy to give an O(W)-competitive algorithm: just ignore all the
job weights and use any reasonable algorithms for the unweighted case given
in [8, 4]. An algorithm is reasonable if, at any time step, (i) it never idles when
there is at least one job that can be executed without violating the deadline and
temperature constraints, and (ii) it executes a job that is not strictly dominated
by another pending job, where a job i strictly dominates another job j if h(i) ≤
h(j) and d(i) ≤ d(j) and at least one of these two inequalities are strict. Examples
of reasonable algorithms include the earliest deadline first, and the coolest first
algorithms. It was shown in [4] that, for any constant R > 1, all reasonable
algorithms are O(1)-competitive (with the constant depending on the value of
R) with respect to the number of completed jobs. Since we lose a factor of at
most W for the weight of each job, the competitiveness of O(W) follows.

3 Randomized case: full heat

For the randomized case, we show that the competitive ratio is also unbounded
in the case with full heat. We follow Yao’s principle [12] and specify a proba-
bilistic construction of the adversary and bound the competitive ratio against
deterministic algorithms with inputs over this distribution.

Theorem 1. Any randomized algorithm for the problem 1|online-ri, hi, pi =
1|
∑
wiUi has competitive ratio Ω(logW).

Proof. Choose a large enough positive integer n, and let Ji (1 ≤ i ≤ n) be a job
with r(Ji) = i− 1, d(Ji) = i, w(Ji) = 2i−1 and h(Ji) = R.

At t = 0, job J1 arrives. Then at each time step i (1 ≤ i < n), with conditional
probability 1/2 the sequence stops, and with conditional probability 1/2 the
adversary continues to release job Ji+1. The probability is conditional on the fact

that the time step i is actually reached, i.e. the adversary is not stopped before.
If Jn is released, then the sequence stops. Thus, we have a total of n different
input sequences, appearing with probability 1/2, 1/4, . . . , 1/2n−1, 1/2n−1. (See
Figure 1.)

Fig. 1. Input distribution for the randomized lower bound.

Since all jobs have full heat, any algorithm can schedule at most one of
those jobs. Hence, without loss of generality, we can restrict our attention to
deterministic algorithms Aj of the following form: do not start the first j − 1
jobs in the sequence and start the j-th, for some 1 ≤ j ≤ n. Then Aj gets the
value of job Jj if the adversary releases Jj , i.e. the adversary has not stopped after
releasing the previous j−1 jobs. This happens with marginal probability 1/2j−1.
Otherwise, if the adversary stopped before releasing Jj , no value is obtained.
Thus E[|Aj |] = (1/2j−1)(2j−1) = 1. Note that this is independent of j. Thus the
expected profit of any online algorithm is 1.

For OPT , it always schedules the last job released by the adversary; thus
E[|OPT |] =

∑n−1
i=1 (1/2i)(2i−1) + (1/2n−1)(2n−1) = (n − 1)/2 + 1 = (n + 1)/2.

Therefore the competitive ratio is at least (n+ 1)/2. Since W = 2n−1, we have
proven a lower bound of Ω(logW) on the competitive ratio. ut

This competitive ratio can be attained by a randomized algorithm using
the classify-and-random-select technique [2]. We assume the minimum weight
is 1 and the maximum weight is W , and that this value of W is known in
advance. We partition the weight range [1, W] into dlnW e classes, with ranges
[1, e), [e, e2), . . . , [eblnWc−1, eblnWc), [eblnWc,W]. In each class, the job weights
differ by a factor of at most e. We randomly choose one of the classes and
ignore all jobs not in this class. Then we run the O(1)-competitive algorithm for
unweighted instances [4] for jobs in this class, ignoring the job weights.

Let Ai be the schedule of the online algorithm for the i-th class, and OPTi
be the optimal schedule for jobs in the i-th class. Let cR be the competi-

tive ratio of the algorithm for the unweighted version of the problem. Then
|OPTi| ≤ cRe|Ai| since the algorithm is cR-competitive for the number of jobs
and at most a factor of e is lost on job weights. So E[|A|] =

∑
|Ai|/dlnW e ≥

(
∑
|OPTi|/cRe)/dlnW e ≥ |OPT |/(cRedlnW e). Thus the algorithm is (cRedlnW e)-

competitive.

Theorem 2. There is a randomized O(logW)-competitive algorithm for the
problem 1|online-ri, hi, pi = 1|

∑
wiUi.

4 Randomized Case: Non-full Heat

Assuming that jobs do not have the maximum permissible heat, we can give
better algorithms. For example, if all jobs have heat at most R−1, then it is easy
to verify that the temperature never exceeds the threshold. We can generalise
this idea to the case where all jobs have heat at most H, where H < R with
an arbitrarily small difference between H and R. We show how to give constant
competitive randomized algorithms in such cases. In fact we give a tradeoff
between the competitiveness and the maximum permissible heat. We first make
this observation.

Lemma 1. Suppose an algorithm runs jobs of heat at most h every k ≥ 1 time
slots, and keeps idle at other slots. If h ≤ R(1 − 1/Rk), then the temperature
does not exceed 1 at any point.

Proof. We claim that the temperature immediately after executing a job of heat
at most h is at most 1. For the first such job, the temperature is at most R(1−
1/Rk)/R = 1 − 1/Rk, so this clearly holds. By induction assume this is true
after n jobs. Then the temperature before executing the (n+1)-th job is at most
1/Rk−1, since there are k − 1 idle slots. Hence the temperature after executing
it is at most (1/Rk−1 + h)/R ≤ 1. ut

Suppose all jobs have heat at most H = R(1 − 1/Rk), for some k ≥ 1. Our
algorithm first uses an existing online algorithm for scheduling unit jobs without
heat consideration. We can use any such existing algorithms, deterministic or
randomized ([10, 6] among others), to produce such a schedule S. We then vir-
tually create k schedules S1, S2, . . . , Sk: S1 schedules the same job as S during
slots t = 0, k, 2k, . . ., and stays idle at all other slots. Similarly S2 schedules the
same job as S during slots t = 1, k+1, 2k+1, . . ., and stays idle at all other slots.
In general, Si follows S during slots of the form t = (i−1)+qk for q = 0, 1, 2,
Each Si schedules a job only every k slots, and each slot in S is “covered” by
exactly one of the Si’s. By Lemma 1, each of the Si’s will never exceed the
temperature threshold. The online algorithm chooses one of S1, S2, . . . , Sk in the
beginning, each with probability 1/k. Clearly this process can be done online.

Let c < 2 be the competitive ratio of the underlying unit job scheduling
algorithm without heat consideration. The expected weighted throughput E[|A|]
of our algorithm is equal to 1/k of the total weighted throughput of S1, . . . , Sk,

i.e., E[|A|] = 1
k

∑k
i=1 |Si|. Let OPT ′ denote the optimal offline schedule for the

same input instance but without heat considerations. Then we have:

|OPT | ≤ |OPT ′|,

|S| =
k∑
i=1

|Si|, and

|OPT ′| ≤ c|S|.

The first inequality is true because putting in temperature consideration
clearly cannot result in a schedule with a larger value; the second is from the
definition of the algorithm; and the last one comes from the competitiveness of
the underlying unit job scheduling algorithm. Combining all these together, we
have |OPT | ≤ ckE[|A|], and therefore the competitive ratio of our algorithm is
k · c.

Note that the maximum permissible heat R(1−1/Rk) can be made arbitrarily
close to R (the maximum permissible heat) for sufficiently large k. For heat limits
not of the form R(1 − 1/Rk), just take next higher limit of that form and the
bound is only affected by a constant factor. We can therefore rephrase the result
as follows: let ε = 1/Rk. Then k = logR(1/ε) = O(log(1/ε)) and therefore we
have:

Theorem 3. For any 0 < ε ≤ 1/R, the above algorithm schedules jobs with
H = R(1− ε) with competitive ratio O(log(1/ε)).

We can prove an almost matching lower bound:

Theorem 4. For jobs with maximum heat H = R(1 − ε) = R(1 − 1/Rk), and
for large enough k, no randomized algorithm can have competitive ratio better
than k.

Proof. Let n ≥ 1 be the largest integer such thatH/Rn+H/R > 1. (It is required
that H ≥ R/2, i.e. Rk ≥ 2 for such an n to exist.) Let p be a real number in
(0,1), to be determined later. The proof is very similar to that of Theorem 1.
Let Ji (1 ≤ i ≤ n) be a job with r(Ji) = i − 1, d(Ji) = i, w(Ji) = 1/pi−1 and
h(Ji) = H. At t = 0, job J1 arrives. Then at each time step i (1 ≤ i < n), with
conditional probability 1−p the sequence stops, and with conditional probability
p the adversary continues to release job Ji+1. The probability is conditional on
the fact that the adversary is not stopped before time step i. If Jn is released,
then the sequence stops.

Since H/Rn+H/R > 1, any algorithm can schedule at most one of those jobs.
Hence, similar to Theorem 1, we only need to consider deterministic algorithms
Aj that do not start the first j−1 jobs in the sequence and start the j-th, for each
1 ≤ j ≤ n. Then Aj gets the value of job Jj if the adversary releases Jj , which
happens with marginal probability pj−1. Thus E[Aj] = (pj−1)(1/pj−1) = 1. For
OPT , if the adversary stops at job Jj , it only schedules job Jj ; thus

E[OPT] =

n−1∑
i=1

(pi−1(1− p))(1/pi−1) + (pn−1)(1/pn−1) = (n− 1)(1− p) + 1.

Therefore, the competitive ratio is at least (n − 1)(1 − p) + 1. Choose p to
be arbitrarily close to 0, then the ratio can be made arbitrarily close to n. The
condition on H/Rn + H/R > 1 is equivalent to n < logR(RH/(R − H)). It
follows that the lower bound is dlogR(RH/(R − H))e − 1. Since H = R(1 −
ε) = R(1 − 1/Rk), we have that the lower bound is equal to dlogR(R2(1 −
1/Rk)/(1/Rk−1))e − 1 = dlogR(Rk+1 −R)e − 1. This lower bound is equal to k
for any R > 1 and sufficiently small ε, and thus the upper bound is optimal up
to a constant factor of c. ut

Resource Augmentation. Alternatively, we can use the above idea to give con-
stant competitive algorithms even for jobs with full heat, but against a slightly
weaker adversary; this follows the idea of resource augmentation. In our case, we
compare an online algorithm with temperature threshold 1 + ε against an offline
optimal algorithm with threshold 1.

Observe that if the heat contribution of all jobs in a certain schedule are
multiplied by a factor λ, then the temperature at any point in the schedule is also
multiplied by λ. Hence, when an online algorithm with temperature threshold
1 + ε is given an instance I with maximum heat H ≤ R, it scales the heat
contribution of all jobs by a factor of 1/(1 + ε), and applies the algorithm in
Theorem 3 on this new instance. Since the algorithm in Theorem 3 produces a
schedule not exceeding temperature 1, the schedule will not exceed temperature
1 + ε on the original instance. This transformed instance I ′ has maximum heat
contribution R/(1 + ε) = R(1− ε

1+ε).
Let A(I) and A(I ′) be the schedule returned by the online algorithm on

I and I ′ (with temperature threshold 1 + ε and 1 respectively). Similarly let
OPT (I) and OPT (I ′) be the schedule produced by OPT on I and I ′ (with a
temperature threshold of 1 in both cases). We have |OPT (I)| ≤ |OPT (I ′)| as
the jobs in I are hotter than those in I ′; |A(I)| = |A(I ′)| as they are the same
schedule; and |OPT (I ′)| ≤ O(log(1/ ε

1+ε))|A(I ′)| as this is the competitive ratio
given in Theorem 3. Putting these together it therefore follows that |OPT (I)| ≤
O(log(1/ ε

1+ε))|A(I)| = O(log(1+1/ε))|A(I)|. This represents a tradeoff between
competitiveness and extra resource (on temperature threshold).

5 Multiple Processors

We have seen that in the single processor case, no deterministic algorithms can
have a bounded competitive ratio. In this section we consider the multiprocessor
(and deterministic) case, and shows that the bounds can be improved, depending
on the number of processors m.

Theorem 5. No deterministic algorithm can be better than (mW)1/m-competitive
for P |online-ri, hi, pi = 1|

∑
wiUi, when W ≥ mm−1.

Proof. Fix a deterministic algorithm A. Consider a sequence of jobs Ji for 1 ≤
i ≤ m, where r(Ji) = i − 1, d(Ji) = i and h(Ji) = R. The weights of the jobs

are given by w(J1) = 1, and w(Ji) = (c − 1)
∑i−1
j=1 w(Jj) for i > 1 where c > 1

is some value to be chosen later. Each Ji is released successively. Note that the
job Ji cannot be scheduled on any processor that has already scheduled another
job Jj for j < i as all of the jobs have full heat contribution. If A chooses not
to schedule some job Jk on any processor then the subsequent jobs will not be
released. In this case A have scheduled the first k−1 jobs and so has a weighted
throughput of

∑k−1
i=1 w(Ji). OPT will schedule all k jobs and so have a weighted

throughput of
∑k−1
i=1 w(Ji) + w(Jk). As w(Jk) = (c − 1)

∑k−1
i=1 w(Ji), this gives

OPT a weighted throughput of c
∑k−1
i=1 w(Ji) giving a competitive ratio of c in

this case.
Otherwise A does not miss any of the Ji jobs, 1 ≤ i ≤ m. This means that

A have scheduled exactly one job on each of its processors. At time m we then
release m jobs X1, . . . , Xm that have heat contributions of R, tight deadlines of
m + 1 and weights of (c

∑m
i=1 w(Ji))/m. A will be too hot to schedule any of

them, while OPT can skip all the Ji and schedule all X1, X2, . . . , Xm one on
each processor. This gives OPT a weighted throughput of c

∑m
i=1 w(Ji) while A

has a weighted throughput of
∑m
i=1 w(Ji) which again gives a competitive ratio

of c.
Each job Ji for i > 1 has weight (c−1)

∑i−1
j=1 w(Jj) and w(J1) = 1. Solving the

recursion we get w(Ji) = ci−1−ci−2. Thus w(Xi) = c(
∑m
i=2(ci−1−ci−2)+1)/m =

cm/m. The minimum job weight is 1 and the maximum weight job is either Jm
or one of the Xi’s. This gives a weight of the heaviest job (and therefore a ratio
of the heaviest to lightest job) of:

W = max{cm−1 − cm−2, c
m

m
}

We have that cm−1 − cm−2 ≤ cm/m as long as cm ≤ c2 + m, which means
in this case W = cm/m. Setting c = (mW)1/m therefore gives the desired
competitive ratio. With this value of c, the condition cm ≤ c2 +m is satisfied if,
for example, W ≥ mm−1. ut

We can prove a deterministic upper bound of O(mW 1/m). The idea is sim-
ilar to the randomized algorithm in Section 3. Split the job weights into m
classes [1..W 1/m), [W 1/m..W 2/m), ..., [W (m−1)/m..W]. Each processor deals only
with jobs in one class. The processor then ignore the weights and use the O(1)-
competitive 1-processor algorithm in [4] to schedule the jobs.

Theorem 6. The above algorithm has a competitive ratio of O(mW 1/m) for
P |online-ri, hi, pi = 1|

∑
wiUi.

Proof. Let Ai be the online schedule produced by processor i (job weight class
i). Let OPTi,j be the OPT schedule of processor j filtered to include jobs in
class i only. For each such schedule j, the O(1)-competitiveness of the algorithm
in [4] implies that the number of jobs completed by Ai is at least 1/cR that in
OPTi,j , for some constant cR. Thus the value of Ai is at least 1/(cRW

1/m) that
of OPTi,j . Summing over all i and j we have that |A| ≥ 1/(cRmW

1/m)|OPT |.
Hence the competitive ratio is O(mW 1/m). ut

6 Conclusion

In this paper we give almost optimal bounds for the online unit job scheduling
problem for weighted throughput with temperature constraints. Further work
will include closing these bounds and also investigating the use of randomized
algorithms or resource augmentation in the multiprocessor case.

Acknowledgement. We thank Kirk Pruhs for useful discussions.

References

1. Nir Andelman, Yishay Mansour, and An Zhu. Competitive queueing policies for
QoS switches. In Proceedings of 14th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 761–770, 2003.

2. Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosen. Competitive non-
preemptive call control. In Proceedings of 5th ACM-SIAM Symposium on Discrete
Algorithms, pages 312–320, 1994.

3. Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Dynamic speed scaling to manage
energy and temperature. Journal of the ACM, 54(1), 2007.

4. Martin Birks and Stanley P. Y. Fung. Temperature aware online scheduling with
a low cooling factor. In Proceedings of 7th Annual Conference on Theory and
Applications of Models of Computation, volume 6106 of Lecture Notes in Computer
Science, pages 105–116, 2010.

5. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, New York, 1998.

6. Francis Y. L. Chin, Marek Chrobak, Stanley P. Y. Fung, Wojciech Jawor, Jiri
Sgall, and Tomas Tichý. Online competitive algorithms for maximizing weighted
throughput of unit jobs. Journal of Discrete Algorithms, 4(2):255–276, 2006.

7. Francis Y. L. Chin and Stanley P. Y. Fung. Online scheduling with partial job
values: Does timesharing or randomization help? Algorithmica, 37(3):149–164,
2003.

8. Marek Chrobak, Christoph Dürr, Mathilde Hurand, and Julien Robert. Algorithms
for temperature-aware task scheduling in microprocessor systems. In Proceedings
of 4th International Conference on Algorithmic Aspects in Information and Man-
agement, pages 120–130, 2008.

9. A. Coskun, T. Rosing, and K. Whisnant. Temperature aware task scheduling in
MPSoCs. In Proc. Conference on Design, Automation and Test in Europe, pages
1659–1664, 2007.

10. Matthias Englert and Matthias Westermann. Considering suppressed packets im-
proves buffer management in QoS switches. In Proceedings of 18th ACM-SIAM
Symposium on Discrete Algorithms, pages 209–218, 2007.

11. J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin. Dynamic thermal manage-
ment through task scheduling. In IEEE International Symposium on Performance
Analysis of Systems and Software, pages 191–201, 2008.

12. Andrew C.-C. Yao. Probabilistic computations: Toward a unified measure of com-
plexity. In Proceedings of 18th IEEE Symposium on Foundations of Computer
Science, pages 222–227, 1977.

13. F. F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU
energy. In Proceedings of 36th IEEE Symposium on Foundations of Computer
Science, 1995.

